Ring-opening polymerization of ε-caprolactone initiated by ganciclovir (GCV) for the preparation of GCV-tagged polymeric micelles.

نویسندگان

  • Alicia J Sawdon
  • Ching-An Peng
چکیده

Ganciclovir (GCV) is a nucleoside analogue with antiviral activity against herpes viral infections, and the most widely used antiviral to treat cytomegalovirus infections. However, the low bioavailability and short half-life of GCV necessitate the development of a carrier for sustained delivery. In this study, guanosine-based GCV was used as the initiator directly in ring-opening polymerization of ε-caprolactone (ε-CL) to form hydrophobic GCV-poly(caprolactone) (GCV-PCL) which was then grafted with hydrophilic chitosan to form amphiphilic copolymers for the preparation of stable micellar nanoparticles. Successful synthesis of GCV-PCL and GCV-PCL-chitosan were verified by 1H-NMR analysis. Self-assembled micellar nanoparticles were characterized by dynamic light scattering and zetasizer with an average size of 117 nm and a positive charge of 24.2 mV. The drug release kinetics of GCV was investigated and cytotoxicity assay demonstrated that GCV-tagged polymeric micelles were non-toxic. Our results showed that GCV could be used directly in the initiation of ring-opening polymerization of ε-CL and non-toxic polymeric micelles for GCV delivery can be formed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone

Objective(s): Micelles have been studied as nanoparticulate drug delivery systems for improving the topical ocular delivery of hydrophobic drugs. The objective of this study was to develop and characterize dexamethasone-loaded polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) micelles to improve patient compliance and enhance the ocular bioavailability of poorly water-soluble ...

متن کامل

Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity

Objective: To construct carcinoma vascular endothelial-targeted polymeric nanomicelles with high magnetic resonance imaging (MRI) sensitivity and to evaluate their biological safety and in vitro tumor-targeting effect, and to monitor their feasibility using clinical MRI scanner. Method: Amphiphilic block copolymer, poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) was synthesized via the r...

متن کامل

Conjugation of Lectin to Poly(ε-caprolactone)-block- glycopolymer Micelles for In Vitro Intravesical Drug Delivery

Amphiphilic poly(ε-caprolactone)-block-poly[2-(α-D-mannopyranosyloxy) ethyl acrylamide] (PCL-b-PManEA) block copolymers were synthesized via a combination of ring-opening polymerization (ROP), reversible addition-fragmentation chain transfer (RAFT) polymerization and reactive ester-amine reaction. The PCL-b-PManEA block copolymers can self-assemble into micelles and encapsulate anticancer drug ...

متن کامل

Strategies for Cellulose Fiber Modification

This thesis describes strategies for and examples of cellulose fiber modification. The ability of an engineered biocatalyst, a cellulose-binding module fused to the Candida antarctica lipase B, to catalyze ring-opening polymerization of εcaprolactone in close proximity to cellulose fiber surfaces was explored. The water content in the system was found to regulate the polymer molecular weight, w...

متن کامل

Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone

Objectives Micelles have been studied as nanoparticulate drug delivery systems for improving the topical ocular delivery of hydrophobic drugs. The objective of this study was to develop and characterize dexamethasone-loaded polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) micelles to improve patient compliance and enhance the ocular bioavailability of poorly water-soluble dru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2015